
Largest Sum Sub-Array Solution 
by Nathan Feaver; July 25th, 2011 

Problem Statement:  

You're given an array containing both positive and negative integers, that array may be quite large, and you are asked to 

find the sub-array of any size with the largest sum. Small examples: 

[0,-1,3,4,-10] = [3,4] = Sum of 7 

[1,3,4,-1,6] = [1,3,4,-1,6] = Sum of 13 

[1,3,4,-12,10] = [10] = Sum of 10 

Solution Method: 

I first approached this problem by finding the solution manually for several different arrays of larger size.  It is impressive 

how quickly the eye can spot the highest numbers and deduce the correct sub-array.  For example, let’s look at the 

following array of 20 integers: 

[ -5    1  -7  -1  -10   9  -4   4  -3   11   15  -8  -14    1  -3  -4   6  4  -8  10] 

After looking at it for a while, regions with high numbers and regions with low numbers begin to stand out, including the 

max sum sub-array (‘++ : High’ region): 

 [ -5    1  -7  -1  -10   9  -4   4  -3   11   15  -8  -14    1  -3  -4   6  4  -8  10]  

  
 

Quickly, we can narrow in on the sub-array that we are looking for:  It is the ‘++ : High’ region, bounded by low regions 

and a second high region that is not quite high enough to warrant inclusion in the sub-array. 

 

To keep track of this computationally, I kept a running sum so that negative regions are characterized by negative slopes 

and positive regions are characterized by positive slopes.  Additionally, in order to cut down on processing time later on, 

neighboring elements with the same sign are combined (although this uses more memory).  The running summation for 

this array is seen below with the expected slopes in the ‘low’ and ‘high’ regions: 
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Distance Through Array 

This step is completed 

in the first for loop: 

lines 86 – 111 

 



Once the summation is completed, the program must find the largest span from a local minimum to a local maximum to 

locate the largest sub-array sum.  This is done quickly by stepping through the new summation array one more time, 

looking for the minimum and checking the difference from it at each point. 
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Distance Through Array 
minimum 

maximum  span  
= largest sub-array sum 

sub-array 
indices 

This step is completed 

in the second for loop: 

lines 122 – 133 

 

Important Variable Explanations: 

array – original array of 1000 uniformly distributed random numbers ranging from -15 to 15 

newArray – combines neighboring values of same sign from ‘array’ and adds them to previous 

element in ‘newArray’: the running summation 

pos – Keeps track of neighboring positive/negative regions 

count – keeps track of location in newArray 

maxSpan – summation of largest sum sub-array 

leftInd – left index of largest sum sub-array 

rightInd – right index of largest sum sub-array 

Performance Comparison: 

Comparison of the CPU time was carried out against Kadane’s algorithm (most-efficient linear time 

solution) as well as a brute force method.  Kadane’s algorithm is found on lines 137 – 157 and the 

brute force method is found on lines 162 – 178. 

 

CPU time was averaged over 10 computations in variables: 

t(10) – times for method described here 

tk(10) – times for Kadane’s algorithm 

tb(10) – times for brute force algorithm 

 

Results for 1000 array elements: 

Kadane’s algorithm is around 150 times faster than my algorithm [both O(n)] 

My algorithm is around 2.5 times faster than the brute force algorithm [O(n2)] 


